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Invasion percolation on self-affine topographies

G. Wagner, P. Meakin, J. Feder, and T. Jo”ssang
Department of Physics, University of Oslo, Box 1048, Blindern, 0316 Oslo 3, Norway

~Received 12 August 1996!

Invasion percolation~IP! with trapping was studied on two-dimensional substrates with a correlated distri-
bution of invasion thresholds. The correlations were induced by using the heights of~211!-dimensional
self-affine rough surfaces with Hurst exponents in the range 0,H,1 to assign the threshold values. The
resulting IP clusters consist of ‘‘blobs’’ with sizes up to the entire cluster size that are connected by fine
‘‘threads.’’ The fractal dimensionalityDH of the IP clusters is dominated by the blobs. The blob size distri-
bution is is related toH andDH . @S1063-651X~97!11401-5#

PACS number~s!: 47.55.Mh, 47.60.1i, 05.40.1j
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I. INTRODUCTION

The invasion percolation~IP! algorithm @1–3# is remark-
ably successful in describing the slow immiscible displa
ment of a wetting fluid by a nonwetting fluid in a porou
media@4–10#. In slow displacements, viscous forces can
neglected, and the process is governed by the capil
forces. In equilibrium, the pressure of the nonwetting flu
must exceed the pressure of the wetting fluid by an amo
pc , the capillary pressure, to sustain the curvature of
interface. When a nonwetting fluid is injected into a po
filled with wetting fluid, the capillary pressure must be ove
come. For a circular throat of radiusR and for the interfacial
tensionG acting between the two fluids,pc522Gcosu/R,
whereu is the contact angle. The contact angle denotes
angle at which the interface between the two phases m
the solid surface of the matrix. Thus the nonwetting flu
preferentially invades the pores with the largest throats.

The displacement process can be mapped on the IP m
in a straightforward manner. In site IP, the porous medium
represented by a lattice of sites. Each sitei is assigned a
random numberr i , and represents a pore with the diame
1/r i . Initially, all sites are occupied by the wetting ‘‘de
fender’’ fluid. An injection site is chosen and filled with th
nonwetting ‘‘invader’’ fluid. The algorithm consists of re
peating the following three steps:~1! Identify all defender
sites that are adjacent to the invaded sites.~2! Among these
perimeter sites, find the one with the lowest numberr i . ~3!
Fill this site with an invader fluid. The process is terminat
when the edge of the lattice is reached by the cluster form
by the invader fluid.

In two dimensions, the incompressibility of the two fluid
must be taken into account by using a ‘‘trapping rule’’@3#.
When the invader fluid has surrounded a region of defen
fluid, the defender fluid cannot be displaced, and is trapp
Growth of the IP cluster must take place at unoccupied
rimeter sites that are not trapped, i.e., a path consisting
steps between nearest-neighbor unoccupied sites to the
side of the cluster must exist. The trapping rule appear
change the universality class of the model.

In standard IP, the thresholds are distributed uniformly
the unit interval without any spatial correlation in their va
ues, representing a homogeneous porous medium. How
the pore sizes in geological fields clearly are strongly co
551063-651X/97/55~2!/1698~6!/$10.00
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lated on large scales, and there are indications that corr
tions also exist on scales down to the pore scale@11#. Moti-
vated by this observation, the IP model with and witho
trapping was studied using a multifractal distribution
thresholds@12,13#. In these studies the fractal dimensionali
of the IP cluster was reported to be little or not at all affect
by the spatial correlations. In contrast, changes in the
cluster growth pattern were observed in simulations us
site-bond lattices in which correlations were induced by
constraint that a bond size be less than or equal to the siz
the smaller site to which it was connected@14#.

In the present work, IP with trapping in two dimension
was studied using substrates with a different kind of cor
lated disorder. For each sitei at the position (xi ,yi) in a
two-dimensional lattice ofL3L sites, the threshold value
assigned to the site was given by thez value of a rough
surfacez(xi ,yi) with the same extensionL3L in the x-y
plane. The substrate obtained in this way may be used
model the slow displacement of a wetting fluid in a fractu
by a nonwetting fluid. The three-dimensional fracture is re
resented by the two-dimensional lattice such that each la
site corresponds to a region of the fracture plane, and
thresholdr i assigned to the site corresponds to the aper
of the fracture.

For a perfectly nonwetting fluid (u5180°) to advance
and displace a wetting fluid in a fracture region of infini
extension and of aperturea, the capillary pressure

pc5
2G

a
~1!

must be overcome. The nonwetting fluid tends to inva
fracture regions with wide apertures, and does not displ
the wetting fluid from narrow aperture regions. In the qua
static case, the displacement process is governed entirel
the fracture geometry.

Field measurements of natural rock surfaces indicat
fractal character@15–18#. Fresh brittle fractures of differen
types of rock were shown to generate self-affine rough s
faces @19#. An isotropic self-affine surfacez(x,y) remains
statistically invariant to the scaling transformationx→lx,
y→ly, andz→lHz. The roughness exponent or Hurst e
ponentH lies in the range 0,H,1. ForH50.5, a ‘‘verti-
cal’’ cross section of the surface has the same statist
1698 © 1997 The American Physical Society
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55 1699INVASION PERCOLATION ON SELF-AFFINE TOPOGRAPHIES
properties as a Brownian process. ForH.0.5, the cross sec
tion is persistent~segments leading in the positive or th
negativez direction are likely to be followed by segmen
leading into the samez direction!, and forH,0.5, the sur-
face is antipersistent. ForHÞ0.5, the cross section is cha
acterized by a process called fractional Brownian mot
@20#. A simple model of a fracture aperture fielda(x,y) is
provided by taking the difference of two self-affine surfac
z1(x,y) andz2(x,y) ~with the same amplitude and roughne
exponent! representing the fracture boundaries,

a~x,y!5z2~x,y!2z1~x,y!. ~2!

As long as the surfaces do not overlap@a(x,y).0#, the in-
vasion thresholdsr i are well defined after discretizing th
aperture fielda(x,y) on a lattice of sites. The aperture fie
also forms a self-affine surface with the same roughness
ponent as the two surfaces@21#. In the present work, apertur
fields were modeled by thez-value fieldsz(x,y) of single
self-affine surfaces:

a~x,y!5z~x,y!. ~3!

Invasion percolation using this type of substrates was a
studied recently by Patersonet al. @22# and Du, Satik, and
Yortsos@23#. Percolation on self-affine topographies was a
plied by Sahimi@24# to model transport phenomena in he
erogeneous media. Invasion percolation in three dimensi
using heterogeneous substrates characterized by fract
Brownian motion, was studied by Paterson and Painter@25#.

II. SIMULATION

Periodic self-affine surfacesz(xi ,yi) were generated on
square lattice using a random midpoint displacement a
rithm with random successive addition@26,27#. The Hurst
exponent characterizing the surfaces was measured usin
height difference correlation function

D~r !5^uz~xi ,yi !2z~xi1r x ,yi1r y!u2& r
x
21r

y
25r2. ~4!

For self-affine surfaces with positive Hurst exponentH, the
correlation function scales asD(r );r 2H @26#. The invasion
threshold fieldsr (xi ,yi)5z(xi ,yi) were obtained from the
substrates. All sites on the lattice were filled with the wetti
fluid, and the central site of the lattice was filled with th
nonwetting fluid. The IP simulation was carried out by le
ting the cluster of nonwetting fluid grow stepwise and inva
perimeter sites with the smallest threshold.

Figure 1 shows a series of IP clusters obtained in
manner. For low values ofH (0,H,0.5), the clusters
were reminiscent of ordinary IP clusters grown on a latt
with uncorrelated invasion thresholds. Numerous regions
defender fluids became trapped, and the distribution of
sizes of the regions followed a power law.

For higher values ofH (0.5,H,1), the clusters had a
disordered shape, and could be described in terms
‘‘blobs’’ of different sizes, connected by thin ‘‘threads.
Compared to the case of lowH, a lesser amount of defende
fluid became trapped. The IP cluster size distributions w
skew, and extended over a large interval. UsingH'0.85, the
largest clusters covered more than 50% of the substr
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while the smallest ones covered less than 0.005% when
edge of the substrate was reached. In contrast, the size
tribution of IP clusters grown on uncorrelated substrates
approximately Gaussian.

A compact blob was formed when the growing IP clust
reached a local threshold minimumM 1 on the substrate, and
neighboring sites with higher thresholds were invaded su
sequently~see Fig. 2!. When the cluster reached a siteS
separatingM1 from a second local minimumM2, a thread of
invaded sites was formed as the growth of the IP clus
followed a path of steepest descent on the threshold surf
Repeating the cycle, a new blob developed when the reg
aroundM2 was filled out, incorporating an increasing frac
tion of the thread. Adjacent blobs coalescenced if no furth
local threshold minima were found. Blobs could thus acqu
a sizeb of the order of the entire cluster size.

III. CLUSTER STRUCTURE AND DIMENSIONALITY

Figure 3 shows, on a log-log scale, the mean numb
S(R) of cluster sitess counted in a circle of radiusR around

FIG. 1. Clusters of nonwetting fluid~black! obtained from simu-
lations of IP with trapping using self-affine substrates of si
L5256, at the stage when the edge of the substrate was reac
The grey shade indicates the invasion thresholds used, with br
shades corresponding to high thresholds. For comparison, the
dom number generator seed was kept constant, and the Hurst e
nent was varied fromH50.13 ~a!, H50.23 ~b!, H50.39 ~c!,
H50.55 ~d!, H50.73 ~e! to H50.89 ~f!, respectively. The arrow
indicates the injection site.
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the center of mass of an IP cluster. The mean size~mass! S
is defined by the ratio of the second moment of the s
distribution N(s,R) to the first moment,
S5(s2N(s,R)/(sN(s,R). The clusters grew on the corre
lated substrates using periodic boundary conditions. If a c
ter reached the edge of the substrate, it could reenter
substrate from the opposite edge. Each simulation was
minated when a cluster attempted to intersect itself. Fo
self-similar fractal of fractal dimensionalityD,

S~R!;RD. ~5!

In an intermediate range 1,R!L, the measured mean siz
follows a power lawS(R);RD. As a check,D was deter-
mined for IP clusters grown on uncorrelated substrates
linear least-squares fit yieldedDuc51.8260.01, consistent
with earlier studies of IP@2,3,28,29,13#. Using correlated

FIG. 2. Illustration of the IP cluster growth model. The invasi
threshold of each sitei is given by the heightz(xi ,yi) of a rough
surface. A blob is formed as the cluster~shaded sites! fills out a
region around the local threshold minimumM1. When the cluster
reaches the siteS, a thread leading to a second local minimu
M2 is formed. The region aroundM2 is then filled.

FIG. 3. The dependence of the mean number of sitesS(R) in a
circle of radiusR around the center of gravity of IP clusters, on
log-log scale.R22S(R) was measured for IP with trapping on un
correlated substrates~circles! and on correlated substrates wi
H'0.31 ~squares!, H'0.47 ~diamonds!, andH'0.85 ~triangles!,
respectively.R22S(R) is also plotted for IP without trapping on
correlated substrates withH'0.47 ~filled diamonds!. The solid
lines represent linear least-squares fits for distances in the r
2<R<64. The substrate size was 5123512 sites.
e
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substrates, linear least-squares fits yieldedD0.3151.896
0.01,D0.4751.9160.00, andD0.8551.9460.01, forH'
0.31,H'0.47, andH'0.85, respectively. The errors ind
cate the standard deviation of the fit parameter. Figur
indicates that the IP clusters became more dense as the H
exponent increased.

The two-point density correlation functionC(r ) is fre-
quently used to characterize fractal structures. This quan
is defined as

C~r !5
^r~r0!r~r01r !& ur u5r

^r~r0!r~r0!&
, ~6!

where 0<r(r )<1 is the cluster mass density and the av
aging is over the occupied originsr0, orientations of the
space vectorr , and a large sample of clusters. For a se
similar fractal of dimensionD on a two-dimensional sub
strate, C(r ) is expected to have the form
C(r );r 22Df (r /r c), wherer c is a distance characteristic o
the overall cluster extension. The cutoff functionf (x) has
the form f (x)51 for x!1, and decreases faster than a
power ofx with increasingx for x@1. Figure 4 shows a plo
of C(r ), using different values of the Hurst exponentH and
the same sample of clusters that was used to measureS(R)
~Fig. 3!. The correlation function obtained from simulation
on uncorrelated substrates shows a decay consistent
C(r );r 22Duc for small r . A linear least-square fit toC(r )
yielded Duc51.8060.01. Turning to correlated substrate
linear least-squares fits toC(r ) ~for r!L) yielded dimen-
sions of D0.3151.8860.01, D0.4751.8960.01, and
D0.8551.9560.01, respectively, forH'0.31,H'0.47, and
H'0.85, respectively. These values are consistent with
results presented in Fig. 3 and confirm the systematic
crease of the fractal dimensionality of the IP clusters with
degree of spatial correlations.
ge

FIG. 4. Log-log plot of the density-density correlation functio
C(r ) versusr , on a log-log scale.C(r ) was measured for IP with
trapping on uncorrelated substrates~circles! and on correlated sub
strates withH'0.31 ~squares!, H'0.47 ~diamonds!, andH'0.85
~triangles!, respectively. Also plotted isC(r ) for IP without trap-
ping on correlated substrates withH'0.47 ~filled diamonds!. The
solid lines represent linear least-square fits to the curves for th
values of r where log„C(r )… appears to be a linear function o
log(r). The substrate size was 5123512 sites.
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The IP cluster structure was studied by measuring th
number~per lattice site! n(b) of blobs of size~mass! b ob-
tained by removing the connecting ‘‘threads.’’ For each sit
of an IP cluster, it was determined if the removal of the sit
fragmented the cluster. In this case, the site was marked a
thread site. When all sites had been tested, the thread s
were removed. The remaining sites defined the blobs. Figu
5 shows the distributionn(b) measured on substrates of
2563256 sites counted at the stage when the growing clu
ters reached the edge of the substrate. At this stage, clus
sites were removed if the removal implied fragmentation o
the IP cluster. The remaining sites defined the blobs. Th
distributionsnL,H(b) of the number of blobs with sizes in the
rangeb to b1db (db→0) in on a substrate of sizeL with a
Hurst exponentH may be described by the scaling form

nL,H~b!;L2Hb2t f ~b/LDH!, ~7!

where f (x) is a scaling function that decreases faster tha
any power of x for x@1. Here the cutoff blob size
bc;LDH was assumed to be equal to the IP cluster size. T
exponentt is given by the size distribution of regions in the
self-affine surfaces with a heightz(x,y) less than a ‘‘hori-
zontal’’ cut parallel to the thex-y plane at an arbitrary height
z0. For self-affine surfaces with 0,H,1, the linear exten-
sionr of such regions scales asN(r );r H23 @20,30#. Making
use of Eq.~5!, the size distribution of blobs with fractal
dimensionalityDH filling out a random sample of regions
with z(x,y),z0 is found to be N(b);b2t, with
t5(21DH2H)/DH . TheL dependence in the scaling form
Eq. ~7! is obtained from the requirement that the first mo
ment m (1)5*bn(b)db of the blob size distribution scale
with the system size asm (1);LDH22. Figure 6 shows an

FIG. 5. Log-log plot of the numbern(b) of ‘‘blobs’’ per lattice
site of sizeb obtained after removing single-connecting cluster site
from IP clusters~with trapping!, using a log-log scale. The distri-
butions were averaged over a sample of clusters in bins of logarit
mically increasing size. The IP clusters were grown on uncorrelate
substrates~circles! and on correlated substates withH'0.31
~squares!, H'0.47 ~diamonds!, and H'0.85 ~triangles!, respec-
tively. The substrate size was 2563256 sites. Each simulation was
terminated when the IP cluster reached the substrate edge.
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attempt to collapse several blob size distributionsnL,H(b)
corresponding to different values ofL and H on a single
curve f (x), using Eq.~7! and the fractal dimensionalitie
DH found from the scaling behavior of the mean cluster si
From the figure, the scaling functionf (x) is found to be a
power law with an exponent of approximately 0.33 f
x!1.

IV. DISCUSSION

It was recently shown that the percolation transition@31#
on a correlated substrate of the type used here is never
cal for H.0 @32,33#. The percolation exponentnH ~charac-
terizing the divergence of the correlation length at the per
lation threshold! becomes infinite for substrates wit
topographies given by thez-value field of self-affine surface
with positive Hurst exponent. On such a substrate, the p
colation threshold may be interpreted as the minimal thre
old heightzc up to which the underlying self-affine surfac
must be ‘‘flooded’’ ~representing the invasion of the corr
sponding substrate sites! in order to obtain a spanning cluste
of flooded regions that are connected to each other. If
relations between critical exponents known from percolat
theory carry over, the fractal dimensionality of the infini
percolation cluster at the percolation threshold must be eq
to the substrate dimensiond52. Du, Satik, and Yortsos@23#
measured the density of percolation clusters at the crit
threshold on self-affine topographies withH50.5, and re-
ported no dependence on the size of the lattice, implyin
cluster dimension of 2. The same result was found earlier
Schmittbuhl, Vilotte, and Roux@32#.

s

h-
d

FIG. 6. Attempt to collapse the blob size distributionsn(b)
measured for IP with trapping onto a single curve by using
scaling form given in Eq.~7!. For low values of the argumen
b/LDH, the scaling functionf (b/LDH) is linear with a slope of ap-
proximately 0.33~straight solid line!. The IP clusters were grown
on correlated substrates withH'0.31 ~squares!, H'0.47 ~dia-
monds!, andH'0.85 ~triangles!, respectively. The substrates we
of 64364 sites ~solid lines!, 1283128 sites ~dotted lines!,
2563256 sites ~dashed lines!, and 5123512 sites ~dot-dashed
lines!, respectively. Each simulation was terminated when the
cluster reached the substrate edge.
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1702 55G. WAGNER. P. MEAKIN, J. FEDER, AND T. JO”SSANG
There are strong indications that IP without trapping g
erates a percolation cluster that is equivalent to the infi
percolation cluster@34,35#. IP without trapping thus may be
expected to lead to IP clusters with the fractal dimensiona
DH

! 52. Figures 3 and 4 show attempts to determine the fr
tal dimensionality for IP without trapping on correlated su
strates withH'0.47. From the measurement ofS(R) in Fig.
3 and C(r ) in Fig. 4, D0.47

! 51.9560.01 and
D0.47

! 51.9560.01 were obtained, respectively. These resu
do not permit a definite conclusion since finite-size effe
may reduce the effective fractal dimensionality from 2.0
the measured values ofDH

! '1.95. The IP clusters studied i
these measurements had a size between approxim
50 000 and 150 000 sites. This finding may be compa
with the fractal codimensionalitya522DH

! 50.0360.01
measured forH50.5 in IP without trapping by Paterso
et al. @22#.

Isichenko@30# analyzed the percolation problem on se
affine topographies, and predicted that the perimeter of
infinite percolation cluster is fractal, with a fractal dime
sionality DH

P5(1023H)/7 (0,H,1). The trapping rule
only applies to sites in the interior of the IP clusters, su
that the structure of the cluster perimeters is not affected
the rule. IP with trapping may thus lead to IP cluster peri
eters that are equivalent to the perimeters of infinite perc
tion clusters.DH

P was measured by box counting the perim
eters of some of the IP clusters and was found to
consistent with the theoretical prediction.

For IP with trapping, the results presented here indic
that the cluster dimensionalityDH depends on the Hurst ex
ponentH characterizing the threshold correlations of the u
derlying substrate. Trapping is not a local rule, but affe
the growth of the cluster on a global scale, leading to
deviation ofDH fromDH

! A similar difference is well known
for IP on uncorrelated substrates in two dimensions@3#. In
three dimensions, trapping occurs rarely, and no such gl
effect of the trapping rule on the cluster dimensional
should be expected.
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The effect of the trapping rule on two-dimensional su
strates is related to the dynamics of the IP process. The
namics may be expected to be quite different from the
namics of standard IP@29#. For example, the pair correlatio
functionP(r ), giving the probability that IP cluster sites tha
are invaded in two subsequent steps are separated by a
tancer , decays approximately asP(r );r22 on uncorrelated
substrates, forr below a cutoff length. On correlated sub
strates usingH50.5, a much slower decay was foun
@P(r );r2g with g'0.9#. The cluster growth proceede
‘‘more smoothly,’’ with prominent ‘‘bursts’’ occurring less
frequently than in standard IP. For large values ofH, trap-
ping of large regions was rare and the deviation ofDH from
DH

! became small.
For low values ofH, the fractal dimensionalityDH of the

IP clusters appears to be close toDuc, characterizing IP with
trapping on uncorrelated substrates. This result is consis
with the findings of Meakin@13# mentioned in Sec. I. The
multifractal substrates studied in the cited work were gen
ated recursively and are equivalent to the self-affine ‘‘hi
archical’’ substrates used by Schmittbuhl, Vilotte, and Ro
@32# in theH→0 limit.

In summary, IP with trapping on substrates with a sp
tially correlated threshold distribution resulting from th
mapping of a self-affine surface has been studied. The fra
dimensionality of the IP clusters appears to be a tunable
rameter, depending on the Hurst exponentH characterizing
the threshold correlations.
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