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Invasion percolation on self-affine topographies
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Invasion percolatiorflP) with trapping was studied on two-dimensional substrates with a correlated distri-
bution of invasion thresholds. The correlations were induced by using the heigli&t+aj-dimensional
self-affine rough surfaces with Hurst exponents in the rangdd&<1 to assign the threshold values. The
resulting IP clusters consist of “blobs” with sizes up to the entire cluster size that are connected by fine
“threads.” The fractal dimensionalityp of the IP clusters is dominated by the blobs. The blob size distri-
bution is is related t¢d andD, . [S1063-651X97)11401-3

PACS numbes): 47.55.Mh, 47.60ti, 05.40:+]

I. INTRODUCTION lated on large scales, and there are indications that correla-
. . . . . tions also exist on scales down to the pore s¢ald. Moti-

The invasion _percolatl_o_ﬂP) algorlthm_[l—_a] Is remark- | e by this observation, the IP mogel with and without
ably successful in describing the slow immiscible displacey,4ing" was studied using a multifractal distribution of
ment of a weiting fluid by a nonwetting fluid in @ porous i, esholdg12,13. In these studies the fractal dimensionality
media[4-10. In slow displacements, viscous forces can bey the |P cluster was reported to be little or not at all affected
neglected, and the process is governed by the capillangy the spatial correlations. In contrast, changes in the IP
forces. In equilibrium, the pressure of the nonwetting fluidclyster growth pattern were observed in simulations using
must exceed the pressure of the wetting fluid by an amoun§ite-bond lattices in which correlations were induced by the
P, the capillary pressure, to sustain the curvature of theonstraint that a bond size be less than or equal to the size of
interface. When a nonwetting fluid is injected into a porethe smaller site to which it was connecteidy].
filled with wetting fluid, the capillary pressure must be over- In the present work, IP with trapping in two dimensions
come. For a circular throat of radisand for the interfacial was studied using substrates with a different kind of corre-
tensionT” acting between the two fluidq.= —2I"cod/R, lated disorder. For each sifeat the position X;,y;) in a
where ¢ is the contact angle. The contact angle denotes thevo-dimensional lattice oL XL sites, the threshold value
angle at which the interface between the two phases mee&ssigned to the site was given by thevalue of a rough
the solid surface of the matrix. Thus the nonwetting fluidsurfacez(x;,y;) with the same extensiohXL in the x-y
preferentially invades the pores with the largest throats.  plane. The substrate obtained in this way may be used to

The displacement process can be mapped on the IP modeiodel the slow displacement of a wetting fluid in a fracture
in a straightforward manner. In site IP, the porous medium i®y a nonwetting fluid. The three-dimensional fracture is rep-
represented by a lattice of sites. Each sitis assigned a resented by the two-dimensional lattice such that each lattice
random number;, and represents a pore with the diametersite corresponds to a region of the fracture plane, and the
1/r;. Initially, all sites are occupied by the wetting “de- thresholdr; assigned to the site corresponds to the aperture
fender” fluid. An injection site is chosen and filled with the of the fracture.
nonwetting “invader” fluid. The algorithm consists of re-  For a perfectly nonwetting fluid {=180°) to advance
peating the following three stepél) Identify all defender and displace a wetting fluid in a fracture region of infinite
sites that are adjacent to the invaded sit@8sAmong these extension and of apertui the capillary pressure
perimeter sites, find the one with the lowest numher(3)

Fill this site with an invader fluid. The process is terminated :E
when the edge of the lattice is reached by the cluster formed Pe a
by the invader fluid.

In two dimensions, the incompressibility of the two fluids must be overcome. The nonwetting fluid tends to invade
must be taken into account by using a “trapping rulg8].  fracture regions with wide apertures, and does not displace
When the invader fluid has surrounded a region of defendethe wetting fluid from narrow aperture regions. In the quasi-
fluid, the defender fluid cannot be displaced, and is trappedstatic case, the displacement process is governed entirely by
Growth of the IP cluster must take place at unoccupied pethe fracture geometry.
rimeter sites that are not trapped, i.e., a path consisting of Field measurements of natural rock surfaces indicate a
steps between nearest-neighbor unoccupied sites to the oditactal charactef15—18. Fresh brittle fractures of different
side of the cluster must exist. The trapping rule appears ttypes of rock were shown to generate self-affine rough sur-
change the universality class of the model. faces[19]. An isotropic self-affine surface(x,y) remains

In standard IP, the thresholds are distributed uniformly orstatistically invariant to the scaling transformati&r-\x,
the unit interval without any spatial correlation in their val- y—\y, andz—\"z. The roughness exponent or Hurst ex-
ues, representing a homogeneous porous medium. HowevegmonentH lies in the range H<1. ForH=0.5, a “verti-
the pore sizes in geological fields clearly are strongly correcal” cross section of the surface has the same statistical
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properties as a Brownian process. Fbr 0.5, the cross sec-
tion is persistentsegments leading in the positive or the
negativez direction are likely to be followed by segments
leading into the same direction), and forH<0.5, the sur-
face is antipersistent. Fdi # 0.5, the cross section is char- JHEs8
acterized by a process called fractional Brownian motior &5 %
[20]. A simple model of a fracture aperture fieddx,y) is B .
provided by taking the difference of two self-affine surfaces ¥
z,(x,y) andz,(x,y) (with the same amplitude and roughness |5
exponenk representing the fracture boundaries,

a(x,y)=22(x,y) — z1(X,Y). )

As long as the surfaces do not overla(x,y)>0], the in-
vasion thresholds; are well defined after discretizing the
aperture fielda(x,y) on a lattice of sites. The aperture field §
also forms a self-affine surface with the same roughness e: |~
ponent as the two surfacgal]. In the present work, aperture
fields were modeled by the-value fieldsz(x,y) of single
self-affine surfaces:

a(x,y)=z(x.y). )

Invasion percolation using this type of substrates was als
studied recently by Patersat al. [22] and Du, Satik, and
Yortsos[23]. Percolation on self-affine topographies was ap- |
plied by Sahimi[24] to model transport phenomena in het-
erogeneous media. Invasion percolation in three dimension
using heterogeneous substrates characterized by fractior
Brownian motion, was studied by Paterson and Pair#g}.

II. SIMULATION

Periodic self-affine surfacegx; ,y;) were generated on a FIG. 1. Clusters of nonwetting fluithlack) obtained from simu-
square lattice using a random midpoint displacement algdations of IP with trapping using self-affine substrates of size
rithm with random successive additid26,27]. The Hurst L=256, at the stage when the edge of the substrate was reached.

exponent characterizing the surfaces was measured using thee grey shade indicates the invasion thresholds used, with bright
height difference correlation function shades corresponding to high thresholds. For comparison, the ran-

dom number generator seed was kept constant, and the Hurst expo-
A(r)={(]z(x; ayi)_z(xi+rani+ry)|2>r2+r2=r2- (4 nent was varied fromH=0.13 (a), H=0.23 (b), H=0.39 (c),
x H=0.55(d), H=0.73 (e) to H=0.89 (f), respectively. The arrow

For self-affine surfaces with positive Hurst exponehtthe indicates the injection site.

correlation function scales as(r)~r®" [26]. The invasion  while the smallest ones covered less than 0.005% when the
threshold fieldsr(x;,y;) =z(x;,y;) were obtained from the edge of the substrate was reached. In contrast, the size dis-
substrates. All sites on the lattice were filled with the wettingtribution of IP clusters grown on uncorrelated substrates is
fluid, and the central site of the lattice was filled with the approximately Gaussian.
nonwetting fluid. The IP simulation was carried out by let- A compact blob was formed when the growing IP cluster
ting the cluster of nonwetting fluid grow stepwise and invadereached a local threshold minimuih, on the substrate, and
perimeter sites with the smallest threshold. neighboring sites with higher thresholds were invaded sub-
Figure 1 shows a series of IP clusters obtained in thisequently(see Fig. 2 When the cluster reached a sie
manner. For low values oH (0<H<O0.5), the clusters separatingVl; from a second local minimuri, a thread of
were reminiscent of ordinary IP clusters grown on a latticeinvaded sites was formed as the growth of the IP cluster
with uncorrelated invasion thresholds. Numerous regions ofollowed a path of steepest descent on the threshold surface.

defender fluids became trapped, and the distribution of th&épeating the cycle, a new blob developed when the region
sizes of the regions followed a power law. aroundM, was filled out, incorporating an increasing frac-

For higher values oH (0.5<H<1), the clusters had a tion of the thread. Adjacent blobs coalescenced if no further
disordered shape, and cduld be d'escribed in terms dpcal threshold minima were found. Blobs could thus acquire

“plobs” of different sizes, connected by thin “threads.” @ Sizeb of the order of the entire cluster size.
Compared to the case of loM, a lesser amount of defender
fluid became trapped. The IP cluster size distributions were
skew, and extended over a large interval. Udihg0.85, the Figure 3 shows, on a log-log scale, the mean number
largest clusters covered more than 50% of the substrat&(R) of cluster sites counted in a circle of radiuR around

Ill. CLUSTER STRUCTURE AND DIMENSIONALITY
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FIG. 2. lllustration of the IP cluster growth model. The invasion
threshold of each siteis given by the heighz(x;,y;) of a rough
surface. A blob is formed as the clusteghaded sitesfills out a
region around the local threshold minimuvh;. When the cluster
reaches the sit&, a thread leading to a second local minimum 05 , , ,
M, is formed. The region aroun, is then filled. 0.0 0.5 1.0 1.5 20

log,o(r)
the center of mass of an IP cluster. The mean Gizas$ S
is defined by the ratio of the second moment of the size FIG. 4. LOg-lOg plOt of the density-density correlation function
distribution N(s,R) to the first moment, C(r) versusr, on a log-log scaleC(r) was measured for IP with
S:ESZN(S,R)/ESN(S,R). The clusters grew on the corre- trapping on uncorrelated substratescles and on correlated sub-
lated substrates using periodic boundary conditions. If a clusst"ates withH~0.31 (squarej H~0.47 (diamonds, andH~0.85
ter reached the edge of the substrate, it could reenter tHg1angles, respectively. Also plotted i€(r) for IP without trap-
substrate from the opposite edge. Each simulation was tefN9 on correlated substrates with~0.47 (filled diamonds: The

. - . solid lines represent linear least-square fits to the curves for those
minated when a cluster attempted to intersect itself. For b q

L . . . values ofr where logC(r)) appears to be a linear function of
self-similar fractal of fractal dimensionality, log(r). The substrate gsizé 3/\)/asp5plSlZ sites

S(R)~R®. (5 substrates, linear least-squares fits yield®gls;=1.89+
) . ) 001, D047:191i000, andDo_85:1.94i0.01, forH~
In an intermediate range<IR<L, the measured mean size o 31 H~0.47, andH~0.85, respectively. The errors indi-
follows a power lawS(R)~RP. As a checkD was deter- cate the standard deviation of the fit parameter. Figure 3

mined for IP clusters grown on uncorrelated substrates. Andicates that the IP clusters became more dense as the Hurst
linear least-squares fit yieldeld,.=1.82+0.01, consistent exponent increased.

with earlier studies of 1H2,3,28,29,18 Using correlated The two-point density correlation functioB(r) is fre-
quently used to characterize fractal structures. This quantity
0.6 . _ is defined as
S M.\’ C(r)_<p(r0)p(r0+r)>\r\:r ®)
oall L TR . ] (p(ro)p(ro))
o where O<p(r)<1 is the cluster mass density and the aver-
— o2l Q o 1 aging is over the occupied origing, orientations of the
< O e space vector, and a large sample of clusters. For a self-
o A similar fractal of dimensiorD on a two-dimensional sub-
2 ool o i strate, C(r) is expected to have the form
= o B C(r)~r?"Pf(r/r,), wherer, is a distance characteristic of
the overall cluster extension. The cutoff functib(x) has
02 . the form f(x)=1 for x<1, and decreases faster than any
o power ofx with increasingx for x> 1. Figure 4 shows a plot
of C(r), using different values of the Hurst exponéhtand
040 To 20 30 the same sample of clusters that was used to me&Re
log,(R) (Fig. 3. The correlation function obtained from simulations

on uncorrelated substrates shows a decay consistent with

FIG. 3. The dependence of the mean number of S{&y in a C,(r)wr%Duc for smallr. A Iin.ear least-square fit t&(r)
circle of radiusR around the center of gravity of IP clusters, on a yielded D,c=1.80+0.01. Tuming to correlated substrates,

log-log scaleR~2S(R) was measured for IP with trapping on un- linear least-squares fits 1@(r) (for r<L) yielded dimen-
correlated substrategircles and on correlated substrates with SIoNs  0f Dg3=1.88-0.01, Dg4,=1.89+0.01, and
H~0.31 (squarel H~0.47 (diamond$, and H~0.85 (triangle,  Dosgs=1.95+0.01, respectively, foH~0.31,H~0.47, and
respectively.R"2S(R) is also plotted for IP without trapping on H=~0.85, respectively. These values are consistent with the
correlated substrates withl~0.47 (filled diamond$. The solid  results presented in Fig. 3 and confirm the systematic in-
lines represent linear least-squares fits for distances in the rang@ease of the fractal dimensionality of the IP clusters with the
2<Rs<64. The substrate size was 51312 sites. degree of spatial correlations.
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FIG. 5. Log-log plot of the numben(b) of “blobs™ per lattice FIG. 6. Attempt to collapse the blob size distributionb)

site of sizeb obtained after removing single-connecting cluster sitesyeasured for 1P with trapping onto a single curve by using the
from IP clusters(with trapping, using a log-log scale. The distri- scaling form given in Eq7). For low values of the argument
butions were averaged over a sample of clusters in bins of Iogaritho/LDH’ the scaling functiorf (b/LP+) is linear with a slope of ap-
mically increasing size. The IP clusters were grown on uncorrelateg,groximate|y 0.33(straight solid ling. The IP clusters were grown
substrates(circles and on correlated substates witH~0.31 on correlated substrates witH~0.31 (squarey H~0.47 (dia-
(squares H~0.47 (diamonds, and H~0.85 (triangles, respec-  mondg, andH~0.85 (triangles, respectively. The substrates were
tively. The substrate size was 28@56 sites. Each simulation was o g4x64 sites (solid lines, 128x128 sites (dotted lines,
terminated when the IP cluster reached the substrate edge. 256% 256 sites (dashed lines and 512512 sites (dot-dashed
lines), respectively. Each simulation was terminated when the IP
The IP cluster structure was studied by measuring theluster reached the substrate edge.
number(per lattice sit¢ n(b) of blobs of size(mas$ b ob-
tained by removing the connecting “threads.” For each siteattempt to collapse several blob size distributions,(b)
of an IP cluster, it was determined if the removal of the sitecorresponding to different values &f andH on a single
fragmented the cluster. In this case, the site was marked asc@irve f(x), using Eq.(7) and the fractal dimensionalities
thread site. When all sites had been tested, the thread sitgg, found from the scaling behavior of the mean cluster size.
were removed. The remaining sites defined the blobs. Figurerom the figure, the scaling functidi(x) is found to be a

256X 256 sites counted at the stage when the growing clusg<1 .

ters reached the edge of the substrate. At this stage, cluster

sites were removed if the removal implied fragmentation of

the IP cluster. The remaining sites defined the blobs. The IV. DISCUSSION
distributionsn,_y(b) of the number of blobs with sizes in the
rangeb to b+ éb (6b—0) in on a substrate of side with a
Hurst exponent may be described by the scaling form

It was recently shown that the percolation transitié]
on a correlated substrate of the type used here is never criti-
cal for H>0 [32,33. The percolation exponen, (charac-
TR b terizing the divergence of the correlation length at the perco-
N (o) ~L""o™"f(b/L™H), @) lation thresholl becomes infinite for substrates with
topographies given by thevalue field of self-affine surfaces
where f(x) is a scaling function that decreases faster thamwith positive Hurst exponent. On such a substrate, the per-
any power ofx for x>1. Here the cutoff blob size colation threshold may be interpreted as the minimal thresh-
b.~LPH was assumed to be equal to the IP cluster size. Theld heightz, up to which the underlying self-affine surface
exponentr is given by the size distribution of regions in the must be “flooded” (representing the invasion of the corre-
self-affine surfaces with a heigl(x,y) less than a “hori-  sponding substrate siteis order to obtain a spanning cluster
zontal” cut parallel to the the-y plane at an arbitrary height of flooded regions that are connected to each other. If the
z,. For self-affine surfaces with<OH<1, the linear exten- relations between critical exponents known from percolation
sionr of such regions scales &r)~r"~3[20,30. Making  theory carry over, the fractal dimensionality of the infinite
use of Eq.(5), the size distribution of blobs with fractal percolation cluster at the percolation threshold must be equal
dimensionalityDy, filling out a random sample of regions to the substrate dimensiah=2. Du, Satik, and Yortso®3]
with z(x,y)<z, is found to be N(b)~b~7, with  measured the density of percolation clusters at the critical
7=(2+Dy—H)/Dy. TheL dependence in the scaling form threshold on self-affine topographies wikh=0.5, and re-
Eq. (7) is obtained from the requirement that the first mo-ported no dependence on the size of the lattice, implying a
ment uV=fbn(b)db of the blob size distribution scale cluster dimension of 2. The same result was found earlier by
with the system size agY~LP+~2, Figure 6 shows an Schmittbuhl, Vilotte, and Rouk32].
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There are strong indications that IP without trapping gen- The effect of the trapping rule on two-dimensional sub-
erates a percolation cluster that is equivalent to the infinitestrates is related to the dynamics of the IP process. The dy-
percolation clustef34,35. IP without trapping thus may be namics may be expected to be quite different from the dy-
expected to lead to IP clusters with the fractal dimensionalitynamics of standard IR29]. For example, the pair correlation
D},=2. Figures 3 and 4 show attempts to determine the fracfunction P(r), giving the probability that IP cluster sites that
tal dimensionality for IP without trapping on correlated sub-are invaded in two subsequent steps are separated by a dis-
strates withH~0.47. From the measurement$(R) in Fig.  tancer, decays approximately &(r)~r ~2 on uncorrelated
3 and C(r) in Fig. 4, D;,=1.95-0.01 and substrates, for below a cutoff length. On correlated sub-
D} 4= 1.95+0.01 were obtained, respectively. These result$trates usingH=0.5, a much slower decay was found
do not permit a definite conclusion since finite-size effectd P(r)~r~" with y~0.9]. The cluster growth proceeded
may reduce the effective fractal dimensionality from 2.0 to 'more smoothly,” with prominent “bursts” occurring less
the measured values BF,~1.95. The IP clusters studied in frequently than in standard IP. For large valuesHoftrap-
these measurements had a size between approximatgid of large regions was rare and the deviatiorDef from
50 000 and 150 000 sites. This finding may be compare®r became small.

with the fractal codimensionalityx=2—D},=0.03+0.01 For low values oH, the fractal dimensionalit{p; of the
et al.[22]. trapping on uncorrelated substrates. This result is consistent

Isichenko[30] analyzed the percolation problem on self- With the findings of Meakir{13] mentioned in Sec. I. The
affine topographies, and predicted that the perimeter of thEultifractal substrates studied in the cited work were gener-
infinite percolation cluster is fractal, with a fractal dimen- ated recursively and are equivalent to the self-affine “hier-
sionality Dﬁ=(10—3H)/7 (0<H<1). The trapping rule archical” substrates used by Schmittbuhl, Vilotte, and Roux
only applies to sites in the interior of the IP clusters, such32] in the H—0 limit. _ _
that the structure of the cluster perimeters is not affected by " summary, [P with trapping on substrates with a spa-
the rule. IP with trapping may thus lead to IP cluster perim- ially _correlated thrgshold distribution resultl_ng from the
eters that are equivalent to the perimeters of infinite percolal@PPing of a self-affine surface has been studied. The fractal
tion cIusters.DE was measured by box counting the perim_dlmensmnallty of_ the IP clusters appears to be a tuna_ble pa-
eters of some of the IP clusters and was found to bdameter, depending on the Hurst exponEntharacterizing

consistent with the theoretical prediction. the threshold correlations.
For IP with trapping, the results presented here indicate
that the cluster dimensionaliy, depends on the Hurst ex-
ponentH characterizing the threshold correlations of the un-
derlying substrate. Trapping is not a local rule, but affects We gratefully acknowledge support by VISTA, a research
the growth of the cluster on a global scale, leading to thecooperation between the Norwegian Academy of Science
deviation ofD from D}, A similar difference is well known and Letters and Den norske stats oljeselskap@FATOIL)
for IP on uncorrelated substrates in two dimensif8ls In  and by NFR, the Research Council of Norway. The work
three dimensions, trapping occurs rarely, and no such globgiresented received support from NFR and from the Institute
effect of the trapping rule on the cluster dimensionalityfor Computer Applications at the University of Stuttgart
should be expected. through a grant of computing time.
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